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The propagation of test particles in a turbulent plasma is considered both 
analytically and numerically. We split the Green's function into a deterministic 
and a stochastic part and derive several exact relations between them; these 
relations show that partial summations of the perturbation series do not lead, in 
general, to a consistent closure for the hierarchy problem. The mean propagator 
in velocity space is calculated numerically for an acceleration field given by an 
Ornstein-Uhlenbeck process. If the relative coherent change �9 of the particle 
velocity remains smaller than 0.1% the Fokker-Planck description may be 
adequate for the time evolution of the propagator. Otherwise the picture of 
Brownian motion becomes worse, and incorporating memory effects or renor- 
malization of the mass operator have also been found to disagree with the 
numerical experiment. 

KEY WORDS: Stochastic acceleration; Green's function for stochastic 
equations; plasma turbulence; numerical simulation. 

1. I N T R O D U C T I O N  

A basic problem in p lasma physics is the necessity of solving the collision- 
less Bol tzmann equat ion (Vlasov's equat ion)  for  the phase space density of  
particles which are exposed to a r a n d o m  accelerating field b = ( e / m ) [ E  + 
(v / e )  x B]; here e, m are the particle 's charge and  mass, respectively, v its 
velocity, and  E, B are the electric and  magnet ic  fields which m a y  consist of 
deterministic or equilibrium fields (external a n d / o r  internal) plus a r a n d o m  
part  due to some p lasma instability. In  the numerical  par t  of this paper  we 
address the problem where only a r a n d o m  field is present. Even if it is 
assumed to be known  in a statistical sense there remains the closure 
problem which is c o m m o n  to all differential equations with stochastic 
coefficients. The usual "weak-coupl ing limit" leading to a consistent picture 
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of Brownian motion can sometimes be justified (a review of "intrinsic" 
closures has been given earlierO)), but in practice these conditions are not 
always met. So the question arises whether we have the proper perspectives 
for a really better theory. The answer is "no," as will be shown in the 
present paper. 

In Section 2 we formulate the problem in terms of averaged and 
stochastic Green's functions, G and G. The formal procedure of eliminating 

can be viewed as a projection technique (4) (if the ensemble average (G)  
is chosen to be zero); this and similar methods have been described and 
used many times in connection with stochastic equations, e.g., in Refs. 5-7. 
The formulation of the present problem in terms of Green's functions has 
also been given several times, (2,8-15) but it seems that not all answers would 
be "no" to the question as stated above. Here we give some exact relations 
between G and G which show that--in the case of Gaussian statistics of b 
--the lowest-order truncation for G is only consistent if G- is nearly the 
same as the free propagator, a result which could also be anticipated 
generally by intuition. 

In the following sections we describe a one-dimensional numerical 
experiment: We calculated the trajectories of several hundred thousands of 
particles in a stochastic force field b(x, t) with mean and two-point correla- 
tion given by 

(b ( x ,  t)) -- 0 

- bZexp( Ix - x'l It _ (b(x,t)b(x',t ')) 
\ 

We then obtained the "'exact" mean propagator ( G )  from the trajectories 
and used this information to test the validity of approximate equations for 
(G) :  The Fokker-Planck equation for the space-averaged part is found to 
be a satisfactory approximation for short correlation times % and small 
relative coherent change e of the particle velocity (<~ 0.1%); for larger % or 
~ 0 . 1 %  this situation is changed, and the discrepancy increasing with e 
can not be diminished by including a memory effect as proposed for other 
stochastic equations O/ or by renormalizing the lowest-order term of the 
mass operator, (2) in agreement with the result of Section 2. Finally, we 
conclude that the Fokker-Planck description of anomalous plasma diffu- 
sion by modes of low frequency (large %) is only valid if the plasma 
diffusion is more than two orders of magnitude smaller than corresponding 
to the Bohm diffusion formula. (16) 

2. EXACT PROPAGATOR RELATIONS 

We consider particles exposed to a random acceleration field b = 
b(x,v, t); the particle density in /z-space, f =  f(x, v, t), is then a solution 
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of Vlasov's equation: 

Lf  = 0 (1) 

L = 5-7 + v .  V + b -  0v (2) 

The solution evolving from an initial smooth distribution f0(x,v) is 
conveniently obtained from the retarded Green's function of Eq. (1), 
G =  G(x,v,t;  x' ,v' ,t '):  

f (x,v,  t ) = f a 3 x ' f a 3 v ' a ( x , v , t ; x ' , v ' , O ) f o ( x ' , v  ') (3) 

with 

LG = 83(x - x')83(v - v ')8(t  - t') (4) 

G = 0  for t < t '  (5) 

Average properties of a plasma can be expressed by the ensemble average 
of f, ( f ) ;  if the plasma is initially unstable we anticipate that the fluctua- 
tions of f evolve to a level which is several orders of magnitude higher than 
the thermal noise. Then ( f )  can be obtained from Eq. (3) after sufficiently 
long time by neglecting the initial correlations in x-space, i.e., by replacing 
f0(x',v')~ (f0(v')) and G ~ ( G ) .  It is, therefore, of interest to obtain an 
equation for the mean propagator ( G ) .  If G denotes any deterministic 
propagator derived from G, with the same initial conditions as G, one can 
introduce the splitting of G as follows: 

G = G' + (~ (6) 

and eliminate the stochastic part G in an exact but formal way. Here ( G  > 
can be chosen freely, with the only restriction_ that its value for t = t' is 
zero; if we choose ( G )  = 0, the definition G = ( G )  results. In this section 
we derive the formal equation for G ("Dyson equation") and some exact 
relations between G and G. 

Let us denote the ensemble average of L by/~:  

L = ( L )  = + v .  V + ( b ) -  ~vv (7) 

where (b )  may be due to a static magnetic field a n d / o r  to an externally 
applied oscillating electric field which drives the instability. Equation (4) 
can then be rewritten in a shorthand notation as follows: 

(L + S L ) G + L G  = 1 

where 1 is an abbreviation of the product of 8 functions, and 

8b = b - (b )  

(8) 

(9) 

(10) 
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The average of Eq. (8) is the "Dyson equation" for G: 

(/~ + M)G = 1 (11) 

where the mass operator M is defined by 

MG = (LG)  (12) 

M has to be understood as an integral operator acting on the first set of 
variables in G, x, v, t. In order to eliminate 6 in favor of M we define some 
new quantities: 

/~-- s + M (13) 

/~ = L - L =  6L - M (14) 

Then our basic equation (8) can be rewritten and formally integrated 
in two equivalent forms: 

s + LG = 0 (15a) 

s  6 )  + L-G= 0 (15b) 

= - (G + 6)s (16a) 

6 = - G-s + 6 )  (16b) 

where again all quantities are understood as integral operators. Equations 
(16a and 16b) can be solved for 6 by a v o n  Neumann series with the 
following result: 

o~ 
= ~ ~ (_ s  (17a) 

n = l  

= ~ ( -  Gs (17b) 
n = l  

The equivalence of Eqs. (17a) and (17b) is obvious, but the equiva- 
lence of Eqs. (16a) and  (16b) is less obvious and implies the following 
"commutator rule" for G: 

O L O  = a L O  (18) 

A second commutator rule can be obtained as follows: Integrating the 
identity L G  ~ L G  we obtain 

= G-L-G (19) 

Because of Eqs. (11) and (13) we have also 

L a  = 1 (20) 
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which may be inserted into Eq. (19) to give 

GLG = GLG (21) 

Adding Eqs. (18) and (21) we obtain our second commutator rule: 

GLG" = G-LG (22) 

Finally we obtain an implicit equation for the mass operator from Eqs. 
(12) and (17b): 

M = / ~ ( G ) F +  ~--1 ( 3 L ( -  G/~)n) (23) 

where ( 2 )  can be freely chosen, as stated above. Choosing now ( G )  = 0 
and retaining in Eq. (23) only the lowest term n = 1 leads to an expression 
for M which is formally of second order in 6L, namely, 

M ~ M (2) _ ~ .  _ _  ( 3L G3 L)  (24) 

But the series in Eqs. (17a) and (17b) and (23) are not ordinary perturba- 
tion expansions for "small" 3L, and one could suppose that Eq. (24) is a 
good approximation for M even in cases where G differs strongly from the 
"free" propagator G, defined according to the following equation: 

s  = 1 (25) 

Indeed a Dyson equation with M = M (2) is the exact result for the 
Kraichnan model where the closure is not due to a smallness parameter. (2) 
Evaluating Eq. (24) for our present problem leads to the following equation 
for G, written in full length: 

[ ~t  + v - V +  ( b ) - ~ v  ]G(x,v,t ;x ' ,v ' , t ' )  

-- Z . f d3x . . . . . .  o, _ f " f dC' (3b(x,v,t)3b(x ,v , t ' ) )  

0 - , . . . . . . . .  �9 - - a ( x , v  ,t , x , v , t )  

= 33(x - x')33(v - v')3(t - t') (26) 

Here we have used the fact that 

3 . b (27) 
b'o  = 0 v  

due to the particular form of the Lorentz force. Unfortunately Eq. (26) is 
nonlinear in G, and solutions have only been obtained in two very restric- 
tive cases. (2) It is, nevertheless, of interest to know the range of validity of 
Eq. (26) and of simpler versions. A simpler version is obtained if G in Eq. 
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(24) or G(x ,v , t ;x ' ,v ' , t " )  in Eq. (26) is replaced by G; this "Bourret 
approximation" has already been proposed and studied in the context of 
other stochastic equations. (1) Finally we consider the space-averaged part 
of G-in the case <b> = 0 and for spatially homogeneous statistics of 
8b -- 8b(x, t): 

t; v') = fd3x<O(x, v, t; x', v', 0)> (28) g(v, 

Then a "small" mass operator M (2) means a slow time dependence of g, 
and the memory effect of the Bourret approximation can be neglected; the 
result is then for times sufficiently larger than the correlation time, the 
ordinary Fokker-Planck equation for the Brownian motion of particles: 

3__gg 
=_0 .D(v) .~v  g for t > 0  (29) 

3t Ov 

D(v) = fo~ " <Sb(vt" ,  t")Sb(O, 0)> (30) 

It is the aim of this section to show for Gaussian statistics of 8b that 
the lowest order of the expansion in Eqs. (17a) and (17b) is only relevant if 
G'~ G. For this purpose we derive now an exact relation between M and 
M (2) . We multiply Eq. (4) from the right by 6L and take the average; the 
result is 

<LGSL> - 0 (31) 

Using L = L + 8L and G = G- + G gives 

L< t~SL> + <SLG--SL> + <SLGSL> = 0 (32) 

We add here a term /],<G)/], on both sides and obtain an equation for 
L<G/,5; eliminating <GL~ by the average of Eq. (22) leads to the following 
mass operator formula: 

s  = M (2) - <SLGBL) + / ~ <G >L  (33) 

This exact formula is useful for testing approximations for G. Using the 
centered part of the lowest-order term, 

d ~ d ~') = - GBLG (34) 

we obtain for Gaussian statistics of 8b from Eq. (33) 

L ~ M  (2~ ~ M (2~ (35) 

and, therefore, 

G ~  G (36) 

It should be noted, however, that the Kraichnan model itself does not 
suffer from this inconsistency since it does not use Eq. (34). But it seems 
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rather plausible that in general G ~ G is only possible if also G ~ G. In the 
following sections we confirm this conclusion also for a non-Gaussian 
example, and we find the parameter range where all theoretical models 
discussed above become invalid. 

3. A METHOD TO TEST CLOSURE APPROXIMATIONS 
NUMERICALLY 

In this section we describe the method used to test numerically 
Kraichnan's closure approximation for the stochastic acceleration problem 
[Eq. (26)]. We also applied it to the Bourret and Fokker-Planck equation, 
resulting as simplifications of (26), and compared the ranges of validity of 
the three theories. Our aim is to gather some empirical material telling us in 
which parameter range the Bourret, or respectively, Kraichnan, equation 
improves the Fokker-Planck description which is known to be valid for 
small amplitudes and short correlation times of the acceleration field. 

Our computations are restricted to the one-dimensional case, and we 
assume homogeneity and stationarity of the acceleration field ensemble. 

3.1. Basic Equations 

The equations for the average propagator are given by 

O--O--~t g(v,t; v') = -~v D(v) ~-~-~ g(v,t; v') (37) 

for the Fokker-Planck description, 

Ot g(v,t; v')= 0-~ fo tdt" (bb) (v ( t -  t " ) , t -  t") 

0-~ g(v, t"; v') (38) • 

for Bourret's approximation, and 

('ac' f +%', f+ dx ,, ,,,) a--~ -~v Jo J- ~ J- ~ (bb>(x", t - 

Xg(O,v, t-  t"; -x" ,v")  O- ~ g(v",t";v') (39) 

for Kraichnan's theory. Here g(v, t; v') and D(v) are as in (28) and (30), 
respectively, and g(x,v,t; x' ,v ' ) := (G(x,v,t; x',v',t '= 0)). To write the 
equations in this simple form we assumed that 

(b(x, t)> = 0 (40) 

and defined 

(bb)(l$l, I 1): = <b(x + t + ,c)b(x, t)) (41) 
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g(v, t; v')dv gives the probability that a particle, having velocity v' at t = 0 
and being accelerated by the stochastic field b(x, t), will have a velocity 
between v and v + dv at time t. Correspondingly, g(x, v, t; x', v') dx dv gives 
the probability that a particle with coordinates (x', v') at t = 0 will be in the 
/~-space interval [x, x + dx] x [v, v + dv] at time t. 

The version of the equations which fits our numerical purposes best is 
arrived at by integrating Eqs. (37)-(39) over a small but finite velocity 
interval [v L, VR]: 

f~Rdv g ( v , t ; v ' )=  D(vR) ~-~- ~ g(v,t;v')lv=v, 

D(vr)  ~v g(v, t; v')lv=~L (42) 

~t ,vL ao 

- ( b b ) ( V L ( t -  t"), t -  t") 

X -~v g(v't";v')l~=~L} (43) 

2-7~  oLf~ g(v,t;v') =  of' t" f+ av" 
X (g(O, VR, t - -  t";--X",V") 

- g(O, vL , t  - t " ; - x " , v " ) }  

• (bb) (x" , t  - t") O, t", g(v", "v') (44) 

Equations (42)-(44) are easier to handle in numerical computations 
because a differentiation is replaced by a difference. For IVR -- VLI suffi- 
ciently small the results derived for this set of equations will also apply to 
(37)-(39). 

3.2. The Basic Test Idea 

We now describe the method applied to check the validity of Eqs. 
(37)-(39). The basic idea is as follows. Each of the equations poses an 
initial-value problem: The time evolution of the average propagator has to 
be determined by solving the respective equation under the assumption 
that, at t = 0, 

g(v, t = 0; v') = 8(v - v') (45) 
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for (37) and (38), respectively, that 

g(x ,v , t  = 0; x ' , v ' )=  ~ ( x -  x ' ) ~ ( v -  v') (46) 

for (39). Thus, if we already know the time evolution of g(v, t; v') and 
g(x,v , t ;x ' ,v ' )  from numerical computations, then the criterion for the 
validity of any of the equations (37)-(39) is simply that it is fulfilled at 
every time when we insert g(v, t; v'), respectively, g(x, v, t; x', v') into it. Our 
test method accordingly consists of the following steps: 

(a) Find g(v,t;v') for v' fixed, v,t variable, and g(O,v,t;x',v') for v 
fixed, x', v', t variable. 

(b) Use these quantities to form the (identical) left-hand sides of Eqs. 
(42)-(44). 

(c) Compute the right-hand sides of (42)-(44). 
(d) Compare the time evolution of these four quantities. 

Steps (b) and (c) are performed on Eqs. (42)-(44) instead of (37)-(39) 
because the relevant quantities are more easily computed. 

That equation whose right-hand side agrees most exactly with (3/Ot) 
g(v, t; v') [or with (~/~t)fov~ dv g(v, t; v'), for that matter] we regard as the 
best approximate expression for the average propagator g. We should, of 
course, repeat this procedure for many different values of v and v' to 
completely determine where and when the equations are adequate. Com- 
puter costs set an upper limit to this endeavor. 

3,3. Computation of the Average Propagator 

So we first must compute g(v,t; v') as a function of v and t, and 
g(0, v, t; x', v') as a function of t, x', v'. According to the interpretation given 
in 3.1 this can be done by employing the following technique: By solving 
numerically Newton's equations of motion, 

)( ( t) = V( t), X(0) arbitrary 
(47) 

= b ( X ( t ) , t ) ,  v ( o )  = v' 

we find the trajectory of a particle with initial velocity v' for a large number 
( ~  105) of different acceleration fields b(x, t). They are constructed in such 
a way that they fulfill 

( b ( x ,  = 0 

b02exp / Ix - x'[ It (48) (b(x , t )b(x ' , t ' ) )  \ 
The technique for computing the fields on the computer is described in the 
Appendix. 
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From the trajectories of the particle g(v, t; v') can be found by subdi- 
viding the v-axis into a large number of cells with length Av and counting 
how many trajectories lie in each of them at time t. If this number is equal 
to N~(t) for a cell centered around v then g(v, t; v') is approximately given 
by 

Uv(t) 
g(v, t; v') - NAy (49) 

where N is the total number of trajectories [number of realizations of 
b(x, t)]. 

A similar approach is used in particle simulations of plasmas to 
compute the charge density. Sophistications developed for that problem 
(like the PIC (17) method) could also be applied here. 

In principle one can determine g(0, v, t; x', v') as a function of t, x', and 
v' in much the same manner: Compute a large number of trajectories for 
sufficiently many initial values x', v', then count how many of them lie in a 
two-dimensional interval of area AxAv centered in ~-space around (0,v) 
(remember that v here has to be considered as fixed). If at time t that 
number is equal to Nx,~,(t ) then 

Nx,v,(t) 
g(0, v, t; x', v') - UAxAv (50) 

Practically, however, this method is prohibitively uneconomic: All the 
trajectories which are not in the interval around (0,v) are in a way 
superfluous. We find their exact positions although we only need the 
information that they are outside our interval. 

Fortunately, it is possible to compute g(0, v, t; x', v') in a more elegant, 
less wasteful way. As mentioned in 3.1, 

probability that a particle 
with initial coordinates (x', 

g ( x , v , t ; x ' , v ' ) d x d v =  v') will be found in the 
interval  [x, x + dx] • [v, 
v + dv] at time t 

This, however, is not the only interpretation possible. We also have 

probability that a particle 
with coordinates (x,v) at 

g(x,  v, t; x', v')dx' dv' = time t started initially in the 
interval [x', x' + dx'] • [v', 
v' + dv'] 

This quantity now can be computed very easily: If we reverse the direction 
of time, Newton's equations (47) will tell us where a particle with given 



Stochastic Particle Acceleration 803 

coordinates originally started at time t = 0. Thus, to find g(0, v, t; x', v') we 
solve numerically equations (47) backwards in time for a particle with 
coordinates (0, v) at time t, stopping at t = 0. We repeat this computation 
for a large number of acceleration fields b(x,  t) with statistical properties 
given by (48). Then we count how many trajectories lie in each cell 
Ix', x '  + dx'] • Iv', v' + dv'] of the (x', v') plane at t = 0, and finally find 
g(0, v, t; x' ,  v') by dividing this number by the cell area Ax'Av '  and the total 
number of trajectories. 

An additional simplification results from the stationarity of the b 
ensemble: Retracing the trajectories not from t to 0 but from t to t o > 0 will 
give us g(O, v, t - t o; x',  v'). 

Let us summarize our strategy for finding g (v , t ; v ' )  and g(O,v, t;  
x',  v'): To compute g(v,  t; v') we solve Newton's equations as an initial- 
value problem) for very many different realizations of the acceleration field 
b(x ,  t). To find g(O, v, t; x',  v') we solve Newton's equations as a final-value 
problem for a large number of b's. Parallel to the forward-in-time evolution 
of the first and the backward-in-time evolution of the second trajectory 
ensemble we compute g(v,  t; v') and g(O, v, t; x',  v') as described above. 

4, PROGRAM DESCRIPTION AND TESTING 

We briefly list the different parts of the program and the numerical 
techniques used. 

First we have to compute a large number of acceleration fields obeying 
(48) (cf. Appendix). A method for generating normally distributed random 
numbers is described in Ref. 18. In addition most machines offer a 
subroutine library containing a Gaussian random number generator. With 
its aid the construction of the piecewise constant fields described in the 
Appendix is straightforward. 

Then Eqs. (47) are used to compute the forward particle trajectory for 
every acceleration field: Time increases from t = 0 to t = t e ,  initial values 
at t = 0 are v = v', x arbitrary because the b ensemble is homogeneous. The 
solution of the equations was obtained by the leap-frog method. In the 
same way the backward particle trajectory was computed for every acceler- 
ation field and for two different f inal  velocities [cf. (44)]. Time now 
decreases from t = t e to t = 0, f inal  values at t = t e are v = v R , x = 0, and 
v = v L, x = 0, respectively. Reversing the sign of the time step makes the 
leap-frog algorithm run backwards in time. 

The next part consists of determining g(v,  t; v') from the forward, and 
g(O, v r ,  t; x',  v') as well as g(0, v R, t; x' ,  v') from the backward trajectory 
ensembles, g(v,  t; v') is given by formula (49), and 

VL(VR)) 
= N A x ' a v '  (51) 
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where Nx, v, equals the number of trajectories lying in a cell centered around 
(x', v') with area Ax'Av'.  

Finally the left- and right-hand sides of Eqs. (42)-(44) are formed and 
plotted as a function of time. Derivatives are evaluated according to 

df(x) f ( x  + Ax) - f ( x  - Ax) 
dx ~ 2Ax (52) 

Integrations are done by the trapezoid rule. The correlation function 
(bb)(x,  t) occurring in the integrands was computed explicitly by summing 
over all acceleration fields. We did not use formula (48). 

The program was thoroughly tested to make sure that it performs 
correctly. We first verified that the acceleration field ensemble is homoge- 
neous and stationary. In Fig. 1 we show the behavior of the correlation 
function under a shift in x and t. Since b(x, t) is constructed on a grid in 
(x,t)  space ( b b ) ( ~ , ' r ) - = ( b ( x + ~ , t +  ~)b(x,t))  is a step function, as is 
demonstrated in Fig. la. The continuous curves result from connecting the 
step centers and agree with the theoretical behavior given by (48). 

The next question arising is whether the finite step size (Ax, At) of the 
piecewise constant function b(x, t) influences the particle behavior. Since 
we want to simulate the limit in which the correlation function is exactly 
given by (48) we must choose Ax and At sufficiently small. Figures 2 and 3 
show what happens when we change the step lengths. The right- and 

i'ol , . . . .  ,o:O 
9f~ I1 - t ~  

v 3 \ 
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Fig. 1. Numerically computed correlation functions. The step function in (a) shows the 
actual shape; continuous lines result from connecting the step centers. 
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lef t-hand sides of (42) and  (43) are plot ted as a funct ion of time for two 
different choices of Ax and  At: Ax = 0.1, At = 0.1 (Fig. 2) and  Ax = 0.05, 
At = 0.05 (Fig. 3). The  agreement  is satisfactory. 

Finally we examined if the propagators  are computed  exactly f rom the 
particle trajectories, and  if the left- and  r ight -hand sides of Eqs. (42)-(44) 
are computed  correctly f rom the propagators .  We  restricted this test to 
equat ion (43). The  r ight-hand side of (44) can then be checked by  put t ing 
b(x, t )equal to zero in the computa t ion  of g(O, vL(VR), t;X',V'). Equat ions  
(43) and  (44) must  be identical for this special case. A similar a rgument  
holds for (42): It  must  become identical to (43) if the correlat ion funct ion 
falls off rapidly enough.  To  test the evaluat ion of the r ight -hand side of (43) 
we made  the p rogram skip the computa t ion  of the trajectory, i.e., the 
particle keeps its initial posit ion and  velocity all the time. The  statistical 
element is in t roduced by  choosing a Maxwell  distribution with mean  v '  for 
the initial particle velocity (instead of v = v'  for every realization). W e  will 
then have 

g(v, t; v') - (2~ro2)1/2 2 ~2- (53) 

and, using (48), the r ight -hand side of (43) can be evaluated analytically. 
Table  I shows how the result compares  with the p rogram output.  The  
left-hand side of (43) should be zero for this special case, which is what  the 

vR program computes.  We  also compared  the values of fvL dv g(v, t; v') and  

Table I. Right-Hand Side of (43), Evaluated Analytically by 
Using (53) and (48), and Computed Numerically." 

Right-hand side of (43) 

t Theory Computation 

1 A t  - 0.082 - 0.081 
2 At -- 0.231 -- 0.229 
3 At -- 0.361 -- 0.359 
4 At -- 0.476 -- 0.473 
5 At -- 0.575 -- 0.572 
6 At -- 0.662 -- 0.658 
7 At -- 0.738 -- 0.733 
8 At -- 0.804 -- 0.799 
9 At -- 0.863 -- 0.856 

a Parameters are o = 0.02, v' = 2.00, b 2 = 
2.53 • 10 -3,  1 c = 1.25, % = 1.0, vL = 1.98, 
v R = 2.02. 
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found for vL = 1.98, v' = 2.00, vR = 2.02, o = 0.02 

~VRdv g(v , t ;  v ' ) =  {0.6826 analytically 
L 0.6830 from the program 

We conclude that this part of the program is correct. 

(54) 

5. RESULTS AND DISCUSSION 

We now present the outcome of the computer experiments described in 
Section 3. The parameters for each run are listed in Table II. 

For small amplitudes and short correlation times of the acceleration 
field Bourret's and Kraichnan's equation both reduce to the Fokker-Planck 
form, as can be shown analytically. This is, of course, what one should 
expect since in this parameter range the Fokker-Planck equation is known 
to give an adequate description. Figure 4 corresponds to this situation. We 
computed the average propagators g(v,  t; v') and g(O, v, t; x', v') numerically 
and inserted them into the right- and left-hand sides of equations (42)-(44), 
choosing v L = 1.99, v n = 2.01, v' = 2.00 (see Table II for the remaining 
parameters). Then we plotted the results as a function of time. All four 
curves stay close together. This means that the equations are fulfilled, and 
we may assume that all three models describe the evolution of the propaga- 
tor correctly. The curves go to zero at t = 0 because we integrated Eqs. 
(42)-(44) over the velocity interval [vL,vnl. We have g(v , t  = 0 ; v ' ) =  
8(v - v'), v' ~ [vL, Vn], and so the integrated propagator will remain con- 
stant in time until it attains nonzero values outside the interval [vL, vR]. 

Table II. Simulation Parameters" 

Number  of 

Run v '  v L v R b o l c / v '  "r c e )< 103 realizations 

2 2.0 1 .99 2.01 8.2 • 10 _3 0.25 0.2 0.17 200000 

3 2.0 1 .99 2.01 8.2 • 10 .3 0.25 0.2 0.17 200000 

4 2.0 1 .99 2.01 8 .2•  10 .3 0.25 0.2 0.17 300000 

5 2.0 1.99 2.01 8.2 • 10 -3 0.25 1.0 0.30 300000 

6 2.0 1.99 2.01 3.5 • 10 -2 0.25 0.2 0.70 150000 

7 2.0 1 .99 2.01 8.2 • 10 -3 0.625 0.2 0.23 300000 

8a 2.0 1 .99 2.01 3.5 • 10 -2 0.05 0.1 0.21 300000 

8b 2.0 1 .99 2.01 3.5 • 10 -2 0.1 0.1 0.32 150000 
i i 

a The number of each run corresponds 
output is displayed. 

to the number of the figure in which its 
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Right- and left-hand sides of Eqs. (42)-(44) for b0= 8.2 • 10 -3, lc/v'= 0.25, 
% = 0.2. 

The crucial question now is what will happen when we increase the 
amplitude or correlation time (respectively, length) of the acceleration field: 
If Bourret's or Kraichnan's equation is indeed valid beyond the range of 
validity of the Fokker-Planck theory then after this change of parameters 
the time evolution of the right- and left-hand sides of (43) or (44) should 
still agree while the two sides of (42) should not. The results for this crucial 
test are displayed in Figs. 5 and 6. In Fig. 5 the correlation time is increased 
by a factor of 5 over the value it had in Fig. 4 while the amplitude and 
correlation length are unchanged. 

In Fig. 6 the amplitude is 4.4 times larger than in Fig. 4, and the 
correlation time and length are the same. In both cases there is very little 
difference between the three curves representing the fight-hand sides of 
(42), (43), and (44), and all of them ar e uniformly bad approximations to 
the left-hand side to which they claim to be equal. Thus we are led to the 
conclusion that, depending on the parameter range, either all or none of the 
three theories are good models for the stochastic acceleration problem. 
A Fokker-Planck equation, however, is much more easily solved than the 
integral equations given by Bourret and Kraichnan, and, therefore, the 
latter two theories are of no use in connection with the stochastic accelera- 
tion problem. 

For completeness we also show in Fig. 7 the results of a computation 
in which the correlation length is increased by a factor of 2.5 while the 



Stochastic Parlicle Acceleration 809 

0.08. 

007 

0.06. 

002 

0.05 

>~@ 0.04 
,,,~.~>.., 
ro[,~ 0.03 

/ J  

l 

i L 
I[/ 
[.: 
J tl/:' 

0.0 i. i; 
g # 

0 
0 

/r//" 

/7 
/ i  

/ ! i  

0.8' 

009 ,?*- \ 
...... ~ W ~  ..... 

Zc = 1.0, ~c = 0.25 

........ BOURRET 

.... FOKKER-PLANCK 

. . . .  ORSZAG- 
KRAICHN,4N 

- -  EXACT 
I 

1 2 3 z. 

Fig. 5. Right- and left-hand sides of Eqs. (42)-(44) for b o = 8.2 X 10 -3, l~/v'= 0.25, 
% = 1.0. The curve through the crosses is formula (63). 

Fig, 6. 

0.7. 

0.6- 

> 0.5- 

5 
O.4- 

> 

> ~ ' ~  >~ 0.3- 

0.2- 

O, ' l "  

OJ 
0 

. . . . .  BOURRET 

. . . .  FOKKER-PLANCK 

- - - O R S Z A G - K R A I C H N A N  

- - E X A C T  

[r 
�9 c =02, 7 = 0 . 2 5  

1 2 w 4 . 5 

Right- and left-hand sides of Eqs. (42)-(44) for bo= 3.5 x 10 -2, tc/v' =0.25,  
% = 0.2. The curve through the crosses is formula (63). 



810 Maaslost and EIs~sser 
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other parameters are again as for the Fig. 4 run. We restricted ourselves to 
the Bourret and Fokker-Planck cases. Again the two theories do not differ 
very much. 

Finally we repeated the high-amplitude run, depicted in Fig. 6, with 
shorter correlation times. This served as a test of consistency for our results. 
Since the system simulated in our computations contains no absolute scales 
the Fokker-Planck theory must be valid also for increased amplitudes, 
provided we choose the correlation time sufficiently small. This is indeed 
how our numerical system behaves, as can be seen in Fig. 8. 

For a quantitative interpretation of our results we compare the values 
of the relative coherent change e of the particle velocity. We define 

( ( 8 , o ) 2 ) ' / 2  
c - v' ( 5 5 )  

8v = s b(X( t ) ,  t) (56) 

1 (57) 
Tc = v ' /1  c + 1/% 

and use the unperturbed orbit X(t)  = X(O) + v't in the expression for By. 
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This gives 

( 2 )  1/2 b0 
= 7 v'(v' / lc  + 1/ c) (58) 

with the correlation function given by (48). The value of E for each run is 
listed in Table II. Although by intuition one would assume that c is small 
enough for the Fokker-Planck approximation to be valid throughout all 
runs the simulation results turned out different. We also notice that c is not 
the only parameter characterizing the strength of the stochastic accelera- 
tion: Although its value is comparable for runs 5 and 8b the Fokker- 
Planck approximation is not equally well satisfied for these two cases. 

At very small times (i.e., t << %, 1Jv')  the finite correlation time and 
length of b(x, t) are not yet felt by the particle. We, therefore, expect it to 
behave as if being accelerated by a field constant in time and space, i.e., 
b(x,t)~_,b(O,O) during this stage. Making this assumption enables us to 
compute g(v, t; v') analytically. The particle velocity is given by 

V(t) = b(O,O)t + v' (59) 

and from the distribution of b(0, 0) the one of V(t) can be found. We have 
(cf. Appendix) 

b (0, 0) = bx (0)b,(0) (6O) 
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where bx(0 ) and bt(0 ) both are normally distributed. We write 

1 exp( 1 b2)o2 (61a) 
fb~(b) - (2~rax2)l/2 2 

1 exp( 1 bZ)a2 (61b) 
f e ' ( b ) -  (27ro2)'/2 2 

for the probability densities of bx(O ) and bt(O ) and find for b(O,O) 

1 

Here K o is the modified Bessel function of the second kind and order zero, 
and b o = %oy. It follows that the propagator is given by 

g(v,  t; v') = ~ K o ~ i  (63) 

This result is plotted in Figures 5 and 6. As we expected, the constant-field 
approximation adequately describes the initial phase of the simulations. A 
completely unforeseen feature, however, is its excellent agreement with the 
numerical results in the middle and final stages of the interaction. As yet 
we have not found a satisfactory theoretical explanation for this surprising 
phenomenon. 

Finally we want to compare our result c ~< 0.1% with values of e as 
obtained from physical experiments. Assuming that the loss of plasma 
energy is governed by the loss of electron energy due to electrostatic 
fluctuations with low frequency (% ---> oo) we have from Eq. (58) 

e ~ bolc /v  '2 = eE l c / x T  e (64) 

where/~ is the fluctuating electric field, and T e the mean electron tempera- 
ture. If Bohm diffusion prevails we have the following formula for the 
diffusion coefficient (16) : 

_ 1 l~v t_  1 cxTe (65) 
D B = 2  16 eB 

where 

v t = c E / B  (66) 

is the drift velocity in a magnetized plasma. For Bohm diffusion we obtain 
then 

e~ = 1/8 (67) 

which is certainly out of the regime where any of the above theories is 
applicable. But many Tokamak experiments succeeded in lowering the 
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plasma diffusion by one or two orders of magnitude, and one may hope 
that the Fokker-Planck regime can be reached in the near future. 

A P P E N D I X  

We briefly describe a method to compute an acceleration field b(x ,  t) 
which fulfills 

( b ( x ,  t ) )  = 0 

= bgexp( Ix - x'] ( b ( x , t ) b ( x ' , t ' ) )  
k 

We define 

bo : =  4o 

l c ]  i=1 "~C 

where ~0 and the ~i are mutually independent Gaussian random variables. 
We assume 

(~i) = 0 

for i, j 1> 1, and 

( ~ 0 )  = 0 

( ~ )  will be defined below. It is obvious from the definition of the ~i that 

(bn) = O, n/> 0 

Furthermore we have for m < n 

Ax 1 (b,,,b,,) = (~o 2) 1 - ~ + i= l - 

1 - (1 - ~ x / l c )  2m 
x 

1 - (1 - ~ x / l c )  2 

Now we choose 

(~o  2)  = o ~ A x  
1 - (1 - A x / I ~ )  2 
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and obtain 

a 2 ( A x )  "-~ 
(b,,b,,) = 2 / l c - - x / 1 2  1 - 

For m > n we find analogously 

a 2 ( A x )  " - ~  
(bmbn) = 2/1 c -6x/ l~  1 - 

or, with no restriction on m and n, 

a'  ( A x )  1'~-~1 
(bmb') = 2 / 1 ~  -~-Ax/12,. 1 -- 

N o w  let A x - ~ 0  and m , n ~ o o  in such a way that max = x = const, 
nAx = x' = const. This gives 

a21c ( Ix-- x" ) 
(b(x)b(x' ) )  = T exp lc 

A time-dependent field b(t) can be constructed in a completely analogous 
fashion. Defining 

b(x , t ) :=  b(x)b(t)  

will produce the desired acceleration field. 
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